
AN INTRODUCTION TO RANDOM PROCESSES FOR THE SPECTRAL
ANALYSIS OF SPEECH DATA

Patrick F. Reidy
Ohio State University

Abstract

Spectral analysis of acoustic data is a common analytical technique with
which phoneticians have ample practical experience. The primary goal of this
paper is to introduce to the phonetician, whose primary interest is the analysis
of linguistic data, a portion of the theory of random processes and the estima-
tion of their spectra, knowledge of which bears directly on the choices made in
the process of analyzing time series data, such as an acoustic waveform. The
paper begins by motivating the use of random processes as a model for acous-
tic speech data, and then introduce the spectral representation (or, spectrum)
of a random process, taking care to relate this notion of spectrum to one that
is more familiar to phoneticians and speech scientists. A final section presents
two methods for estimating the values of the spectrum of a random process.
Specifically, it compares the commonly-used (windowed) periodogram to the
multitaper spectrum, and it is shown that the latter has many beneficial theo-
retical properties over the former.

Patrick F. Reidy. An introduction to random processes for the spectral analysis of speech
data. OSUWPL Volume 60, Spring 2013, pp. 67-116.

PATRICK F. REIDY

1 Introduction

This paper discusses some of the statistical methods involved in the spectral analysis of
speech data. Specifically, its aim is to introduce phoneticians to random processes, the
class of mathematical object used to model speech data; their spectral representation; and
some of the methods for estimating the values of a random process’s spectrum.

In order to appreciate the place that random processes hold in a spectral analysis of
speech data, we first consider a concrete example of such an analysis. Suppose that a re-
searcher wishes to investigate the spectral properties of the English voiceless sibilant /s/.
The first step in this investigation is to collect data by recording several tokens of /s/ from
multiple English speakers. We refer to this type of data as speech data, measurements of
the air pressure fluctuations caused by a particular speech sound wave, as sensed by a mi-
crophone. In practice, these measurements are typically stored by a digital recording device
as a sequence of numbers, where each number represents the instantaneous air pressure at
a given time.

So, the actual physical sound wave generated during speech production and the experi-
menter’s record of that sound wave differ in basic ways. Whereas, the physical sound wave
causes continuous air pressure fluctuations over a continuous interval of time, the record of
the sound wave has been both sampled and quantized, which results in discrete air pressure
fluctuations that occur over a discrete time interval. Because the researcher has access to
only the record of the sound wave and because our focus is the analysis of speech data, we
choose to represent a sound wave and its waveform as a numeric sequence.

Figure 1 shows the waveform of a token of /s/ that might be recorded by the researcher.
The values of this waveform appear to vary randomly from one sample to the next. This
random variation is expected in the waveform of /s/ because its noise source is generated
by turbulent airflow, which by definition involves random air pressure variation. However,
there are more fundamental sources of randomness in all speech data that affect not only
turbulent sounds such as sibilants, but also quasi-periodic sounds like vowels.

One source of this randomness is the recording equipment itself. The microphone, by
its very nature as a physical sensor, is subject to small random changes in its behavior over
time. Since the microphone mediates the physical sound wave and its record, these small
random changes in the microphone’s behavior engender random errors in the recorded
data. Likewise, the recording device may introduce low-frequency background noise whose
intensity varies randomly over time.

Moreover, it is known that speech is subject to intra-speaker variation. The waveforms
of two tokens of the same word spoken by the same person, even in proximate succession,
are assured to show unpredictable differences in their values, which may be due to differ-
ences in speaking rate, vocal effort, articulatory gestures, etc. that the speaker, much less
the researcher, is unable to control from one production to the next; hence, this variation
can be considered random.

68

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

0 20 40 60 80 100 120

−
1

−
0.

5
0

0.
5

1

Time (ms)

N
or

m
al

iz
ed

 a
m

pl
itu

de

Figure 1: A realization of word-initial English /s/ excised from a token of ‘sodas’ as pro-
duced by an adult male speaker.

Due to the randomness intrinsic to speech data, each value of a waveform should be
construed as a particular value taken by a random variable. For example, suppose that
the researcher records a token of /s/ as the sequence of n numbers x1, x2, . . . , xn, where
each value xt is the tth sampled value of the sound wave. Then, a natural model for the
waveform of /s/ is a sequence of random variables X1, X2, X3, . . . , which just so happened
to assume the values x1, x2, . . . , xn when that particular token of /s/ was recorded. The
decision to model the waveform of /s/ as a sequence of random variables correctly captures
the fact that the values of the waveform of a token of /s/ are random in the sense discussed
in the preceding two paragraphs, and motivates the introduction and definition of random
processes.

Definition 1.1 (Random process). A random process is a sequence of random variables,
denoted by {Xt}, that are all defined on the same probability space, take values in the same
measurable space, and are indexed by a variable t that ranges over (a subset of) the integers.

The measurable space in which each random variable takes its values is called the state
space of the random process.

The linguistic objects suitable to be modeled by random processes are not limited to
just the waveforms of phonetic segments. Indeed, the definition of a random process is a
sequence of random variables, all of which are defined on a common probability space and
share a common state space. The specifics of the probability space and state space are left
open. So, all of the following could equally well be modeled by a random process: the
waveform of a word, an f0 track, a sequence of articulator positions, a text corpus. Each of

69

PATRICK F. REIDY

these examples reflects a change in the state space.

When a finite number of the variables in a random process {Xt} assume values, the
result is a sequence of numbers, referred to as a realization of the process and denoted
by {xt}; hence, the acoustic tokens of /s/ that form the data in the example are modeled as
realizations of the random process that models /s/. So, when a random process’s realizations
are acoustic data, it should be clear that the random process models some waveform, not
some sequence of states that describe constrictions in the vocal tract during the generation
of that waveform, or some sequence of articulator postures that formed those vocal tract
constrictions, or some sequence of motor unit activations that postured the articulators, or
any other sequence of “articulatory states” at an even earlier point in the speech chain.

When a random process {Xt} is used to model an acoustic waveform that has been
sampled, the index t represents the (discrete) ordinal points in time at which the sound
wave is sampled; hence, in the example of /s/, each random variable Xt models the tth

value of /s/’s waveform when sampled. If the sampling period T is known in seconds, then
the “time” of each random variable in the random process can be given a physical meaning
by associating each random variable Xt to the time tT seconds.

Once the researcher has collected a number of /s/ tokens, the spectral analysis can
begin. For concreteness, suppose that the goal of the spectral analysis is to determine
the peak frequency of the spectrum of /s/. From a procedural point of view, this analysis is
straightforward: First, the spectrum of each /s/ token is computed; then, the peak frequency
of each spectrum is determined; and finally, these values are used to estimate the peak
frequency of /s/’s spectrum.

From a conceptual point of view, however, some elaboration is needed before this type
of analysis can be considered meaningful. First, the notions of the “spectrum of /s/” and
“the spectrum of a token of /s/” need to be clarified. Each of these ideas is resolved through
the mathematical model of each linguistic object: A token of /s/ is modeled as a sequence of
numbers, whose spectrum is known from the discrete Fourier transform (DFT). Therefore,
the spectrum of a token of /s/ can be understood as the spectrum of the numeric sequence
that models that /s/ token.

Likewise, the spectrum of /s/ refers to the spectrum of the random process that models
/s/. But since the reach of traditional Fourier theory does not extend to random processes,
this immediately exposes a hole in the logic of the procedure above. That is, the DFT is
a map whose domain is a particular class of numeric sequence. This domain excludes all
random processes; therefore, the DFT cannot be used to transform a random process into
its spectrum. The change in mathematical object, whose spectrum is to be found, demands
an extension of traditional Fourier theory. Without a theory of the spectral representation of
random processes, a spectral analysis of /s/, or any other phonetic segment for that matter,
is devoid of meaning.

In §2, the necessary extensions to traditional Fourier theory are reviewed. Specifically,
it turns out that not all random processes have a spectral representation, so conditions on a

70

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

random process that guarantee the existence of its spectrum are presented. Furthermore, it
is shown that each value of the spectrum of a random process {Xt} depends on the infinite
number of random variables in the process. However, {Xt} is only ever observed as a
realization of a finite number of variables; hence, each value of {Xt}’s spectrum can never
be computed exactly. Instead, these values must be estimated from a finite realization.

In §3, two methods are presented for estimating the spectrum of a random process {Xt}
from a particular realization x1, x2, . . . , xn. Each method of estimation is evaluated analyt-
ically in order to explore how “close” to the true spectrum of {Xt} an estimate computed
from either method is expected to be. The form of these spectral estimators reveals the con-
nection between the spectrum of x1, x2, . . . , xn provided by the DFT and the spectrum of
{Xt}. Specifically, both methods for estimating the spectrum of {Xt} from x1, x2, . . . , xn
are based on the DFT of x1, x2, . . . , xn. This discussion, by extension, elucidates how the
spectrum of a token of /s/ may be considered a representation of the spectrum of /s/.

Since the ultimate goal of the spectral analysis described above is the estimation of the
peak frequency of /s/, rather than just its spectrum, the relationship between this or any
other spectral property of /s/ and an estimate of it from a token of /s/ should be clarified
as well. Mathematically, a spectral property of /s/ corresponds to a transformation of the
spectrum of a random process {Xt}. For example, if the spectrum of {Xt} is denoted by
fX , which ranges over a variable ω that denotes frequency, then the peak frequency of /s/
is given by the transformation

Peak(X) = arg max
ω

fX(ω).

Similarly, a spectral property of a token of /s/ corresponds to a transformation of a spectral
estimate computed from a realization x1, x2, . . . , xn. If this spectral estimate is denoted by
Sx, which ranges over the discrete variable ωj , then the peak frequency of the /s/ token is
given by

Peak(x) = arg max
ωj

Sx(ωj).

While the discussion in §3 tells how Sx relates to fX , it says nothing about how Peak(x)
relates to Peak(X). The paper concludes with a discussion of the difficulties attendant with
determining analytically how a spectral property of a random process {Xt} relates to an
estimate of that property computed from a realization x1, x2, . . . , xn. This difficulty of
analysis implies that an analytic comparison of different methods for estimating a spectral
property is for all practical purposes intractable. Instead, the researcher must justify which
method of spectral estimation yields the “best” estimate of a given spectral property, by
way of simulation rather than assuming that the relative merits of one spectral estimator
over another transfer to estimates of spectral properties derived from that estimator.

71

PATRICK F. REIDY

2 Spectral representation of a random process

In this section, the theory of spectral representation for random processes is reviewed.
The discussion is based on Shumway and Stoffer (2006), and the reader is referred there
for a thorough general introduction to random processes and their spectral representation.

In the sequel, upper case letters X, Y, . . . are used to denote random variables; E(X)
denotes the expected value of the random variable X; Var(X) denotes the variance of
X; and Cov(X, Y) denotes the covariance between the random variables X and Y .1 It is
assumed that the reader is familiar with the meaning of all these terms.

In general, the methods from classical statistics cannot be applied to a random process
because these methods assume that the random variables {Xt} are independent and all
follow the same distribution; however, a random process will not always obtain both of
these properties. When used to model the waveform of a phonetic segment, the dependence
structure of a random process and the change in its distributional properties over time are
due to the nature of and physical constraints on speech production. First, speech production
necessarily involves the movement of articulators, and as the posture of the articulators
changes over time, the generated sound wave changes as well; hence, the distributional
properties of a random process that models the wave form are expected to change with
time as well. Second, the articulators move smoothly during the production of speech,
and the posture that they can assume next depends on their current postural state. This
dependence is projected forward in the speech chain, to the acoustic sound wave.

A complete description of the dependence structure of a random process {Xt}would be
had from knowing the joint cumulative distribution function of all finite subsets of random
variables in {Xt}; however, such a complete description is usually unattainable. Instead, a
much more limited description of {Xt}’s dependence structure is taken from its autocovari-
ance function, which reports the covariance between each pair of variables in {X}. Below
it is shown that the autocovariance function is intimately related to the spectral representa-
tion of a random process.

Definition 2.1 (Autocovariance function). If {Xt} is a random process, then the autoco-
variance function γX is defined by

γX(s, t) = Cov(Xs, Xt). (1)

In general, a process does not have a spectral representation; however, there is a very
general subclass of random processes—the (weakly) stationary processes—which do admit
such a frequency-domain representation.

1In general, it is possible that any of E(X), Var(X), or Cov(X,Y) may not converge to a value, making
that value undefined; however, in the sequel it is assumed that all random variables have a finite expected
value and variance and that all pairs of random variables have a finite covariance.

72

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

Definition 2.2 (Stationary process). A random process {Xt} is said to be (weakly) station-
ary2 if it satisfies the following conditions:

1. E(Xt) = µ, for all t in the index set;

2. Var(Xt) <∞, for all t in the index set;

3. Cov(Xs, Xt) = Cov(Xs+h, Xt+h), for all s, t, s+ h, and t+ h in the index set.

A process that does not satisfy the three conditions above is said to be non-stationary.

The third condition says that the covariance between any two random variables in a
stationary process depends only on the amount of time that separates them, which allows
its autocovariance function to be expressed in terms of a single variable denoting the sep-
aration between two random variables in the process: If {Xt} is a stationary process with
autocovariance function γX , then for all indices s and t with h = s− t, it follows that

γX(s, t) = γX(s+ h, t+ h)

= γX(s+ h, s)

= γX(h, 0),

which does not depend on either time argument s or t. Hence, the autocovariance function
of a stationary process can be expressed as a function of just the separation (or lag) h
between two random variables,

γX(h) =def Cov(X0, Xh). (2)

If the {Xt} models a waveform that is sampled with sampling period T seconds, then the
lag h that separates two random variables in the process can be given the physical meaning
of a separation of hT seconds.

The spectral representation of a stationary process can now be introduced. It can be
proved that any stationary process can be expressed as a random linear combination of
simple periodic functions oscillating at different frequencies (Shumway and Stoffer, 2006,
Theorem C.2). Additionally, the autocovariance function of a stationary process also has a
spectral representation, which is provided by the following theorem, stated without proof
(Shumway and Stoffer, 2006, Property P4.1 & Theorem C.3).

Theorem 2.3 (Spectral Representation). If {Xt} is a stationary process whose autocovari-
ance function γX satisfies

∞∑
h=−∞

|γX(h)| <∞,

2By contrast, a process is said to be strictly stationary if the distributional properties of all finite subcol-
lections of random variables in the process do not depend on time.

73

PATRICK F. REIDY

then there is a unique function fX for which

γX(h) =

∫ 1/2

−1/2
fX(ω)e2πiωh dω, h = 0,±1,±2, . . . (3)

The function fX in (3) is called the spectral density or spectrum of {Xt} and is defined by

fX(ω) =
∞∑

h=−∞

γX(h)e−2πiωh, ω ∈ R. (4)

Readers who are familiar with traditional Fourier theory may notice that the spectral
density fX above is the Fourier transform of the (aperiodic, discrete) autocovariance func-
tion γX (Beerends et al., 2003, §18.5). This implies that fX and γX uniquely determine
each other, and that the spectral density fX and the autocovariance function γX contain
the same information since each value of γX can be recovered from fX by integrating the
right-hand side of (3). Therefore, we take the spectral density fX of a stationary process
{Xt} as its foremost spectral representation and in the remainder of this section present
some of the practical consequences of Theorem 2.3 for the spectral analysis of speech data.

2.1 Existence of a spectral representation of speech data

The first of these consequences concerns the speech data that a researcher is able to use
to investigate spectral properties of a phonetic segment’s waveform. Recall the example
from the introduction, in which the waveform of /s/ is modeled by a random process {Xt},
and the data used in the study are modeled as realizations of {Xt}. In this setting, Theorem
2.3 implies that it is only meaningful to talk about the spectrum of the waveform of /s/ if
that waveform is stationary. If /s/’s waveform is not stationary, then a stationary portion of
/s/ must be isolated and used for the purposes of the spectral analysis.

Since the waveform of /s/ is only ever observed through a realization of it, this condi-
tion on the existence of a spectrum of (a portion of) /s/’s waveform, this raises the question
of how to determine whether a particular token of /s/ is a realization of a stationary pro-
cess. A rough but common method for checking this involves plotting the recorded token
x1, x2, . . . , xn as a function of time, and visually inspecting the mean and variance proper-
ties of its waveform. In particular, if the data is a realization of a stationary process, then
it follows from definition 2.2(1) that the mean of x1, x2, . . . , xn should be constant across
time, and it follows from the following proposition that the variance should be constant as
well.

Proposition 2.4 (Variance of a stationary process). If {Xt} is a stationary process, then for
every Xs and Xt in the process, Var(Xs) = Var(Xt).

Proof. Let Xs and Xt be random variables from a stationary process, and let h = t − s.
Then, Var(Xs) = Cov(Xs, Xs) = Cov(Xs+h, Xs+h) = Cov(Xt, Xt) = Var(Xt).

74

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

●
● ●

●
●

● ● ●
● ●

●

● ●
●

●

●

●

●

●
●

●
●

●
●

●

20 40 60 80 100 120

0.
00

0.
04

0.
08

Time (ms)

● Sample mean
Sample variance

Figure 2: The sample mean (gray) and sample variance (black) of successive 10 ms data
windows, with 5 ms overlap among adjacent windows, taken from the /s/ token shown in
Figure 1. The value of each statistic is plotted against the time of the midpoint of the data
window from which it was calculated.

The first and last equalities follow from the definition of covariance, and the second
equality follows from the assumption that Xs and Xt come from a stationary process.

Figure 2 shows the temporal progression of the sample mean and sample variance of
successive 10 ms windows taken from the /s/ token shown in Figure 1. These statistics
estimate the behavior of the evolution of the mean and variance of the random process
{Xt} that models /s/. From these plots, it is seen that the mean remains approximately
constant, but the variance increases with time before decreasing sharply. So, this token of
/s/ does not seem to be a realization of a stationary process, which, when considered in
light of Theorem 2.3, suggests that it would be imprudent, much less meaningful, to use all
the data from this token to estimate spectral properties of /s/.

In order to surmount this problem, the data can be used to hypothesize the location of a
stationary subprocess of {Xt}, whose spectrum can be used as a proxy for that of the entire
process. The data in Figure 2 suggest that the initial 40 ms interval of /s/ is stationary,
as are the intervals between 40 and 60 ms and 70 and 90 ms. However, when automating
a spectral analysis over a large data set, it is practically impossible to inspect each token
individually in order to locate a stationary portion. Instead, it is common practice to take
from each token a short interval placed in the same relative location, e.g. a 20 ms interval
centered at the temporal midpoint of the waveform. It is taken on faith that the interval is
of short enough duration that the statistical properties of the random process do not change

75

PATRICK F. REIDY

too drastically to violate the condition of stationarity. The fact that phoneticians typically
restrict spectral analyses to “steady-state” portions of speech data suggests that random
processes already occupy a very real, albeit unappreciated, role in phonetic analyses.

2.2 The domain of the spectral density function

In equation (4), the spectral density function fX is defined over the entire real line;
however, phoneticians are accustomed to visualizing the spectrum of speech data only on
the interval of frequency values that ranges from 0 to the Nyquist frequency, 1/2T Hz,
where T is the sampling period of the recorded data. Propositions 2.5 and 2.7 reconcile
this discrepancy between theory and practice.

Proposition 2.5 (fX is a periodic function). If {Xt} is a random process that models an
acoustic wave that is sampled with a sampling period T seconds, then its spectral density
fX is a periodic function with period 1/T Hz.

Proof. From the discussion immediately following equation (2), each lag value h corre-
sponds to hT units of time if {Xt} models an acoustic wave that is sampled with sampling
period T seconds. Therefore, equation (4) can be written as

fX(ω) =
∞∑

h=−∞

γX(hT)e−2πiωhT , (5)

where ω is expressed in Hz. Evaluating fX at ω + 1/T then yields

fX(ω + 1/T) =
∞∑

h=−∞

γX(hT)e−2πi(ω+1/T)hT (6)

=
∞∑

h=−∞

γX(hT)e−2πiωhT e−2πih (7)

=
∞∑

h=−∞

γX(hT)e−2πiωhT (8)

= fX(ω). (9)

Equation (8) follows by virtue of the identity eiπn = 1 for any integer n; in this case,
n = −2h.

The preceding proposition shows that the values of fX are determined by the values
that it takes on any interval whose size is 1/T . Proposition 2.7 shows that the size of this
interval can effectively be cut in half.

Lemma 2.6 (γX is an even function). If γX is the autocovariance function of a stationary
process {Xt} as defined by equation (2), then γX is an even function in the sense that
γX(−h) = γX(h) for all h.

76

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

Proof. If γX is as described in the statement of the lemma, then

γX(h) = Cov(X0, Xh) (10)
= Cov(X−h, X0) (11)
= Cov(X0, X−h) (12)
= γX(−h) (13)

Equation (11) follows from definition 2.2(3); equation (12), from the elementary fact that
Cov(X, Y) = Cov(Y,X) for all random variables X and Y .

Proposition 2.7 (fX is an even function). If fX is the spectral density function of a station-
ary process as defined by equation (4), then fX is an even function.

Proof. If fX is the spectral density function of a stationary process, then

fX(−ω) =
∞∑

h=−∞

γX(h)e2πiωh. (14)

Making the change of variable h = −j yields

fX(−ω) =
−∞∑
j=∞

γX(−j)e−2πiωj (15)

=
−∞∑
j=∞

γX(j)e−2πiωj. (16)

Equation (16) follows from Lemma 2.6. Comparison of equation (16) to equation (4)
reveals that the former is just an alphabetic variant of the latter, where the summation
is carried out in reverse. Therefore, it follows that fX(−ω) = fX(ω), which proves the
proposition.

Taken together Propositions 2.5 and 2.7 show that if {Xt} is a stationary process that
models an acoustic wave sampled with sampling period T seconds, then its spectrum fX is
completely determined by the values that fX takes on the frequency interval [0, 1/2T] Hz.
Since fX is an even function, the values that it takes on the interval [0, 1/2T] can be used to
reconstruct its values on the interval [−1/2T, 1/2T]. The size of this reconstructed interval
is 1/T ; hence, the values taken by fX on this interval completely determine fX on its entire
domain since fX is periodice with period 1/T . Consequently, the spectrum of any given
waveform need only be considered on the interval [0, 1/2T], and in the following section
all graphs of these spectra are shown only on this interval.

3 Spectral Estimation

In equation (4), each ordinate of the spectral density, fX(ω), is expressed in terms of
the autocovariance function γX ; however, it is possible to express each ordinate in terms

77

PATRICK F. REIDY

of the random variables in {Xt} by replacing γX in (4) with the righthand side of equation
(2),

fX(ω) =
∞∑

h=−∞

Cov(X0, Xh)e
−2πiωh, ω ∈ R. (17)

From this equation, it is immediately clear that the computation of each ordinate of fX
requires knowledge of the distributional properties of all the random variables in {Xt};
however, the random process is only ever observed as a finite realization x1, x2, . . . , xn.
So, the value of each ordinate fX(ω) cannot be computed exactly, but must instead be
estimated.

A method for estimating the ordinates of fX , which often takes the form of a function
of a finite number of random variables X1, X2, . . . , Xn from a stationary process {Xt},
is referred to as a spectral estimator. The random variables X1, X2, . . . , Xn are called a
sample of the process {Xt}. This section presents two spectral estimators that have been
used in the spectral analysis of speech data: the windowed periodogram and the multitaper
spectrum. Each of these spectral estimators finds its roots in the discrete Fourier transform
(DFT), a spectral transform that is typically defined in terms of a finite numeric sequence
(see Beerends et al. (2003, p. 360)). For the discussion of spectral estimators that follows,
it is more convenient to define the DFT in terms of random variables rather fixed numbers.

Definition 3.1 (Discrete Fourier transform). If X1, X2, . . . , Xn is a finite sequence of ran-
dom variables from a stationary process {Xt}, then the discrete Fourier transform dX of
the sample is defined by

dX(ωj) =
n∑
t=1

Xte
−2πiωjt, (18)

where ωj = j/n for j = 0, . . . , n − 1. The frequencies ωj are referred to as the Fourier
frequencies.

Other commonly encountered spectral transformations derived from the DFT are the
amplitude spectrum |dX |, defined by

|dX |(ωj) = |dX(ωj)|, (19)

and the power spectrum |dX |2, defined by

|dX |2(ωj) = |dX(ωj)|2. (20)

In equation (18), each ordinate of the DFT, dX(ωj) is defined as a sum of the ran-
dom variables X1, X2, . . . , Xn; hence, dX(ωj) is a univariate random variable since a sum
of univariate random variables is itself a univariate random variable. Furthermore, each
dX(ωj) estimates the value of fX(ωj), and as such is an example of a point estimator, i.e.
an estimator of a single value. It follows that it is meaningful to investigate each ordinate’s

78

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

distributional properties, such as its expected value and its variance. Knowlege of these
properties for dX(ωj) enables a discussion of its bias and mean square error (MSE) as a
point estimator. The latter is commonly used as a measure of the quality of a point estima-
tor, so by extension the spectral estimators presented below can be compared via the MSE
of their ordinates.

Definition 3.2 (Bias). If θ̂ is a point estimator of a number θ, then the bias of θ̂, denoted
β
(
θ̂
)

, is defined to be β
(
θ̂
)

= E
(
θ̂
)
− θ.

If β
(
θ̂
)

= 0, then θ̂ is said to be an unbiased estimator.

Definition 3.3 (Mean square error). If θ̂ is a point estimator of a number θ, then the mean
square error of θ̂, denoted MSE

(
θ̂
)

, is defined to be MSE
(
θ̂
)

= β
(
θ̂
)

+ Var
(
θ̂
)

.

The rest of this section is devoted to introducing and comparing the windowed peri-
odogram and the multitaper spectrum. For each spectral estimator, its bias and variance
are discussed only qualitatively; however, some comparison of the two estimators is still
possible.

3.1 The windowed periodogram

The periodogram arises from scaling the power spectrum in (20) by the inverse of the
number n of random variables available to the estimator.

Definition 3.4 (Periodogram). If X1, X2, . . . , Xn are a sample from a stationary process
{Xt}, then the periodogram IX of the sample is defined by

IX(ωj) = n−1|dX(ωj)|2, (21)

where j and ωj are as they are in definition (3.1).

The periodogram is, in some sense, the most “direct” estimator of the spectral density
fX given a particular sample X1, X2, . . . , Xn. To see why this is so, recall the definition of
fX from equation (4). One immediately apparent method for estimating fX(ω) is to esti-
mate the autocovariance function γX and then compute the DFT of the result. A common
estimator of γX is the sample autocovariance function (Shumway and Stoffer, 2006, p. 30).

Definition 3.5 (Sample autocovariance function). If X1, X2, . . . , Xn is a sample of a ran-
dom process {Xt}, then the sample autocovariance function is defined by

γ̂X(h) = n−1
n−h∑
t=1

(Xt+h − X̄)(Xt − X̄), (22)

where X̄ = n−1
∑

tXt is called the sample mean.

79

PATRICK F. REIDY

It is possible to show that for Fourier frequencies other than ω0 = 0 the DFT of the
sample autocovariance function is equal to the periodogram.

Proposition 3.6 (DFT of the sample autocovariance function). If X1, X2, . . . , Xn is a
sample of a stationary process {Xt}, with sample autocovariance function γ̂X and peri-
odogram IX , then for Fourier frequencies other than ω0 = 0,

IX(ωj) =
∑
|h|<n

γ̂X(h)e−2πiωjh.

Proof. First note that for ωj 6= 0, the DFT can be written as3

dX(ωj) =
n∑
t=1

(Xt − X̄)e−2πiωjt, (23)

Therefore, for Fourier frequencies other than ω0 it follows that

IX(ωj) = n−1|dX(ωj)|2 = n−1
n∑
t=1

n∑
s=1

(Xt − X̄)(Xs − X̄)e−2πiωj(t−s) (24)

= n−1
∑
|h|<n

n−|h|∑
t=1

(Xt+|h| − X̄)(Xt − X̄)e−2πiωjh (25)

=
∑
|h|<n

γ̂X(h)e−2πiωjh. (26)

Comparing equation (26) to definition 3.1, it is clear that the periodogram is equal to the
DFT of the sample autocovariance function.

This proposition establishes a nice parallel among the spectral representations of a sta-
tionary process and a sample of that process: The spectrum of each is the Fourier transform
of its appropriate autocovariance function. In order to establish a more direct relationship
between the spectral density and an estimator of it, the windowed periodogram is intro-
duced.

Definition 3.7 (Windowed periodogram). If X1, X2, . . . , Xn is a sample of a stationary
process, and w1, w2, . . . , wn is a sequence of numbers, then the w-windowed periodogram
IwX of the sample is defined by

IwX(ωj) = n−1
n∑
t=1

wtXte
−2πiωjt. (27)

The sequence of numbers w1, w2, . . . , wn is referred to as a data window or data taper.
3For any complex number z 6= 1,

∑n
t=1 z

t = z(1− zn)/(1− z). Let ωj 6= 0 and let z = exp(−2πiωj).
Then, z 6= 1 and zn = exp(−2πiωjn) = exp(−2πijn/n) = exp(−2πij) = 1 since j is an integer; hence,∑n
t=1 z

n = z(1-1)/(1-z) = 0.
Then, to prove equation (23), expand the sum therein and cancel the X̄

∑n
t=1 e

−2πiωjt term.

80

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

In Proposition 3.8 below, it is assumed that X1, X2, . . . , Xn is a sample from a zero-
mean process {Xt}, meaning that E(Xt) = 0, for each random variable Xt in the process.
It is likely that a zero-mean process is a valid model for the acoustic waveform of speech
because the sound waves generated during speech production travel as a chain of increases
and decreases in air pressure, which are likely to cancel each other over time. Indeed,
the data shown in Figure 2 suggest that the acoustic waveform of /s/ is well-modeled by a
zero-mean process.

Proposition 3.8 (Expected value of periodogram ordinates). If X1, X2, . . . , Xn is a sample
of a zero-mean stationary process {Xt}, and w1, w2, . . . , wn is a data window, then the
expected value of the w-windowed periodogram IwX is

E[IwX(ωj)] =

∫ 1/2

−1/2
Wn(ωj − ω)fX(ω) dω, (28)

where

Wn(ω) = n−1

∣∣∣∣∣
n∑
t=1

wte
−2πiωt

∣∣∣∣∣
2

, w ∈ R. (29)

Wn is called the kernel of the data window w1, w2, . . . , wn.

Proof. If the righthand side of (27) is expanded and one of the variables of summation
changed to h = t− s, the result is

IwX(ωj) = n−1
∑
|h|<n

n−|h|∑
t=1

wtwt+|h|XtXt+|h|e
−2πiωjh.

Taking the expectation of both sides yields

E[IwX(ωj)] = n−1
∑
|h|<n

n−|h|∑
t=1

wtwt+|h|e
−2πiωjhE(XtXt+|h|) (30)

= n−1
∑
|h|<n

n−|h|∑
t=1

wtwt+|h|e
−2πiωjhE[(Xt − E(Xt))(Xt+|h| − E(Xt+|h|))] (31)

= n−1
∑
|h|<n

n−|h|∑
t=1

wtwt+|h|e
−2πiωjhγX(h), (32)

where the first equation follows from the linearity of the expected value operator; the sec-
ond, from the fact that {Xt} is a zero-mean process; and the third from equation (2).

81

PATRICK F. REIDY

Finally, substituting the righthand side of (3) for γX(h) gives

E[IwX(ωj)] =

∫ 1/2

−1/2
n−1

∑
|h|<n

n−|h|∑
t=1

wtwt+|h|e
−2πi(ωj−ω)hfX(ω) dω (33)

=

∫ 1/2

−1/2
n−1

∣∣∣∣∣
n∑
t=1

wte
−2πi(ωj−ω)t

∣∣∣∣∣
2

fX(ω) dω (34)

=

∫ 1/2

−1/2
Wn(ωj − ω)fX(ω) dω, (35)

where the last equation follows from (29).

Proposition 3.8 shows that the w-windowed periodogram IwX and the spectral density
fX are mediated by the kernel Wn of the particular data window used on the sample. More
specifically, the integral on the righthand side of equation (35) says that the expected value
of the estimator IwX(ωj) is found by taking the kernel Wn, “laying it on top” of fX so that
Wn(0) coincides with fX(ωj), multiplying the values of each function that overlap, and
then summing these products. This operation is called the convolution of Wn and fX .

However, it is important to recognize that equation (35) does not describe how the win-
dowed periodogram estimate of fX(ωj) is computed from a realization; that information
is found in equation (27). Instead, equation (35) provides information about how the es-
timator IwX(ωj) would behave if a number of estimates of fX(ωj) were computed from
different realizations and then averaged, which is a doorway to the bias of IwX(ωj).

3.1.1 Bias properties of the windowed periodogram

It should be clear from equation (35) that in order for the expected value of IwX(ωj) to
be determined, it is necessary to know both the kernel Wn and the spectral density fX ;
however, in applications involving speech data, it is rarely the case that anything is known
about fX since this would require knowledge of the distributional properties of the random
process {Xt} that models the speech data. It is possible that such distributional knowledge
could become available from a complete theory of the aeroacoustics of speech production,
but at the moment this theory is lacking. Consequently, the bias of each ordinate in the
windowed periodogram, β (IwX(ωj)) = E [IwX(ωj)] − fX(ωj), is unknown because both
terms involved in its computation depend on fX .

Since the direct computation of β (IwX(ωj)) is often impossible in practice, the bias
properties of the windowed periodogram are explored through the kernel Wn, whose form
depends on the particular window applied to the data before the spectral estimate is com-
puted. This section discusses the kernel’s of two data windows that should be familiar
to phoneticians and other speech researchers: the rectangular window and the Hamming
window.

82

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

−0.5 −0.25 0 0.25 0.5

−
20

−
15

−
10

−
5

0

−0.5 −0.25 0 0.25 0.5

Frequency

Lo
g

no
rm

al
iz

ed
 a

m
pl

itu
de

Figure 3: The kernel of the 32-point rectangular window (left panel) and the 32-point
Hamming window (right panel). The values of each kernel were normalized by dividing
by the maximum value of the kernel.

Definition 3.9 (Rectangular window). The (n-point) rectangular window r1, r2, . . . , rn is
the sequence of n elements, each of which is equal to 1

Since rtXt = Xt for t = 1, 2, . . . , n, the rectangular window can be thought of as
the “default” data window applied to the sample X1, X2, . . . , Xn when no other data win-
dow is used. From this it follows that the periodogram from Definition 3.4 is equal to the
windowed periodogram from Definition 3.7 whose data window is the rectangular window;
hence, the relationship between the windowed periodogram ordinate IwX(ωj) and the spec-
tral density fX established in Proposition 3.8 applies to the “unwindowed” periodogram as
well, which implies that the bias properties of the periodram ordinates depend on the kernel
of the rectangular window.

The kernel of the 32-point rectangular window is shown in the left panel of Figure
3. The shape of this kernel is characterised by a dominant peak, called the main lobe,
centered at 0 with several other peaks, referred to collectively as the side lobes, on either
side of it, whose respective heights decrease with their distance from the main lobe. While
the number of side lobes in the kernel of a rectangular window depends on the length n
of the window, the downward sloping pattern from the peak of the main lobe through the
peaks of the side lobes is the same independent of n.

Consider how, according to equation (35), the shape of a kernelWn affects the expected
value, and by extension the bias, of IwX(ωj). The bias of IwX(ωj) is minimized when the

83

PATRICK F. REIDY

righthand side of this equation equals fX(ωj); however, when Wn and fX are convolved,
the value of fX at each frequency ω 6= ωj is scaled by Wn(ωj−ω), and if Wn(ωj−ω) 6= 0,
then Wn(ωj − ω)fX(ω) 6= 0 as well. Consequently, the degree to which E[IwX(ωj)] is
influenced by the value of the spectral density at a frequency ω 6= ωj is directly related to
the magnitude of Wn(ωj − ω). Therefore, the height of the sidelobes of Wn gives some
indication of the extent to which E[IwX(ωj)] is corrupted by the values of fX at frequencies
different, and potentially far away, from fX(ωj), which in turn increases the magnitude of
its bias. In sum, the height of the sidelobes of a kernel is a rough proxy measure of the
bias of the spectral estimator related to that kernel—the greater the height of the kernel’s
sidelobes, the more biased the estimator.

The righthand panel of Figure 3 shows the kernel of the 32-point Hamming window.

Definition 3.10 (Hamming window). The n-point Hamming window h1, h2, . . . , hn is the
sequence of numbers defined by

ht = 0.5

(
1− cos

(
2π(t− 1)

n− 1

))
, t = 1, 2, . . . , n. (36)

The size of the sidelobes in the kernel of the Hamming window, relative to those in the
rectangular window’s kernel, suggests that the Hamming-windowed periodogram IhX has
better bias properties than the rectangular-window periodogram IrX . Further support for
this conclusion is provided by Figure 4, which shows a Hamming-window periodogram
spectral estimate overlaid on a rectangular-window periodogram estimate, both of which
were computed from the center 20 ms of the token of /s/ shown in Figure 1. Both estimates
suggest that the most prominent peak of the spectral density occurs just below 5 kHz.
Taking this together with Proposition 3.8 and both panels of Figure 3, it is expected that at
high frequencies the values of the rectangular-windowed periodogram estimate would be
higher than those of the hamming-windowed periodogram estimate since the sidelobes of
the rectangular window’s kernel are larger than those of the Hamming window’s kernel.

While the differences in bias properties between the rectangular- and the Hamming-
windowed periodogram are borne out by the example estimates in Figure 4, for the purposes
of analyzing speech data, it is more important to focus on how or whether these differences
affect the analysis rather than to focus on the purely theoretical concern as to whether they
exist at all. For example, both windowed periodogram estimates share roughly the same
shape; hence, if the analysis dictates that after the spectrum is estimated, its values are used
to compute statistics that summarize its shape, e.g. the first four spectral moments, then it
is not a foregone conclusion that the two spectral estimators will deliver different results,
just by virtue of their having different bias properties.

3.1.2 Variance of the windowed periodogram

While the use of a data window such as the Hamming window can reduce the bias of
each ordinate of the periodogram, the ordinates of the Hamming-windowed periodogram

84

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

0 5 10 15 20

−
15

−
10

−
5

0

Frequency (kHz)

Lo
g

am
pl

itu
de

Figure 4: A comparison of a Hamming-window periodogram estimate (thin black line)
and a rectangular-window periodogram estimate (thick gray line). Both estimates were
computed from the center 20 ms of the token of /s/ shown in Figure 1.

IhX are still prone to having a large MSE because of their large variance. The following
theorem, based on Shumway and Stoffer (2006, p. 193, Property P4.2) and stated without
proof, establishes the asymptotic distribution of each IhX(ωj), from which it is possible to
investigate the variance of the estimator’s ordinates.

Theorem 3.11 (Distribution of the windowed periodogram ordinates). If ωj , j = 0, 1, . . . , n−
1, are distinct Fourier frequencies such that fX(ωj) 6= 0, for all j, and if for each ωj , {jn}
is a sequence of integers such that jn/n −→ ωj as n −→∞, then as n −→∞,

IhX(jn/n)
d−→ fX(ωj)

2
χ2
2, (37)

where d−→ denotes convergence in distribution.

Hence, the variance of each ordinate of a Hamming-windowed periodogram is approx-
imately

Var [IhX(ωj)] ≈ Var

[
fX(ωj)

2
χ2
2

]
(38)

=

(
fX(ωj)

2

)2

Var[χ2
2] (39)

= fX(ωj)
2. (40)

85

PATRICK F. REIDY

0 5 10 15 20

−
20

−
15

−
10

−
5

0

Frequency (kHz)

Lo
g

am
pl

itu
de

Figure 5: The Hamming-window periodogram estimate (black line) redrawn from Figure
4 plotted with the upper and lower bounds (gray dotted line) of a 95% confidence interval
for each ordinate.

The asymptotic distribution of IhX(ωj) can also be used to approximate a confidence
interval for fX(ωj) with confidence level (1−α). For a given α such that 0 < α < 1, under
the asymptotic distribution of IhX(ωj) in (37), there is (1−α) probability that IhX(ωj) falls
within the interval

fX(ωj)

2
χ2
2(α/2) ≤ IhX(ωj) ≤

fX(ωj)

2
χ2
2(1− α/2),

where χ2
2(α), which is referred to as the lower α probability tail, is the number that satisfies

P (χ2
2 < χ2

2(α)) = α. Rearranging the terms in the above inequality yields a 100(1− α)%
confidence interval for fX(ωj):

2IhX(ωj)

χ2
2(1− α/2)

≤ fX(ωj) ≤
2IhX(ωj)

χ2
2(α/2)

. (41)

These confidence intervals can be visualized by plotting their upper and lower bounds
against frequency. Figure 5 shows the Hamming-windowed periodogram estimate from
Figure 4 along with the upper and lower bounds of a 95% confidence interval for each
ordinate.

Furthermore, the form of the inequality in (41) suggests how the size of each confidence
interval can be reduced. Specifically, the size of each confidence interval is directly related
to the distance between the lower (1 − α/2) and the lower α/2 probability tails for the
chi-squared distribution with two degrees of freedom. If it were possible to find a spectral
estimator whose ordinates had an asymptotic distribution that depended on a distribution

86

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

δ whose variance was less than that of χ2
2, then the distance between the lower (1 − α/2)

and the lower α/2 probability tails of δ would be less than that for χ2
2, and the size of the

confidence interval for each ordinate of the spectral estimator would decrease as well. The
desire for such a reduced-variance estimator motivates the introduction of the multitaper
spectrum.

3.2 The multitaper spectrum

The multitaper spectrum was introduced by Thomson (1982), and the method of its
calculation is simple enough: K copies of a sample X1, X2, . . . , Xn of a stationary process
are weighted by K different data windows {wk,t}. Then, for each windowed realization
{wk,txt}, its eigenspectrum Sk is found by computing its power spectrum. Finally, the K
eigenspectra are averaged to produce the multitaper spectrum M

(K)
X .

It is also easy to get a sense for why this method would yield a spectral estimator, the
variance of whose ordinates is less than that of the Hamming-windowed periodogram. If
for a fixed Fourier frequency ωj , the K ordinates {Sk(ωj)} all have equal variance and
are pairwise uncorrelated, then the ordinate of the multitaper spectrum at that frequency,
M

(K)
X (ωj), will have variance that is 1/K the size of the variance of Sk(ωj). The aim is

therefore to find data windows that will yield uncorrelated eigenspectra whose ordinates
each have reasonable variance.

Data windows that satisfy these conditions are found in the family of discrete prolate
spheroidal (DPS) sequences (Slepian and Pollak, 1961; Landau and Pollak, 1961, 1962;
Slepian, 1964). These sequences were originally discovered as a solution to the spectral
concentration problem, which asks whether it is possible to find a sequence of finite du-
ration whose spectrum contains the maximal proportion of its energy in a fixed frequency
band. To state the problem more concretely, the Fourier transform of a finite sequence is
introduced (Beerends et al., 2003, § 18.5).

Definition 3.12 (Fourier transform of finite sequence). If x1, x2, . . . , xn is a finite sequence
of real numbers, then its Fourier transform X is defined by

X (ω) =
n∑
k=1

xke
−2πiωk, − 1/2 ≤ ω ≤ 1/2. (42)

If x1, x2, . . . , xn is a sequence of length n, whose Fourier transform is X , and W is
a frequency such that 0 < W < 1/2, then the spectral concentration of X in the band
[−W,W], denoted by λ(n,W) is defined as

λ(n,W) =

∫W
−W |X (ω)|2 dω∫∞
−∞ |X (ω)|2. dω

(43)

87

PATRICK F. REIDY

The spectral concentration problem asks whether, given parameters n and W as above,
it is possible to find the sequence that maximizes λ(n,W). It turns out that the answer to
this question is positive (Percival and Walden, 1993, Ch. 3 & 8). Moreover, it is possible
to rank the sequences of length n according to their concentration λ(n,W). This leads to
the definition of a DPS sequence.

Definition 3.13 (DPS sequence). Given fixed parameters n and W to the spectral concen-
tration problem, the DPS sequence of order k, denoted by {v(k)t } is the (k + 1)th maximal
concentration λ(n,W).

So, the sequence that has the greatest energy concentration in the frequency band
[−W,W] is the DPS sequence of order 0; the sequence that has the second greatest en-
ergy concentration in [−W,W] is the DPS sequence of order 1; and so on.

In order to generate DPS sequences that can be used as data windows for a spectral
estimator is it necessary to set the frequency bandwidth parameter W . Conventionally, W
is chosen so that the product nW is an integer that satisfies nW ≤ 4. Futhermore, the
choice of W places an upper bound on the number of eigenspectra K that are averaged to
compute the multitaper spectrum. In particular, K should satisfy K ≤ 2nW (Percival and
Walden, 1993, pp. 334-5).

As an illustration, DPS sequences were generated using the multitaper package for
R, with the parameters n = 883 (the number of data points in a 20 ms waveform sampled
at 44.1 kHz) and W = 4/883. For these parameters, the DPS sequences of orders k = 0
through k = 5 are shown in the top row of Figure 6. The corresponding eigenspectra for
the center 20 ms of the /s/ from Figure 1 are shown in the bottom row of that same figure.

It can be shown that the ordinates of each eigenspectrum Sk all have the same asymp-
totic distribution as the ordinates of the Hamming-window periodogram (Percival and
Walden, 1993, p. 343). That is, for all k such that 0 ≤ k ≤ K and j such that 0 ≤ j ≤ n−1,
the spectral ordinate estimator Sk(ωj) converges in distribution to a scaled χ2

2 random vari-
able.

The DPS sequences are mutually orthogonal, in the sense that, for all orders j and k
such that j 6= k,

n∑
t=1

v
(j)
t · v

(k)
t = 0,

which ensures that the eigenspectra used in the computation of the multitaper spectrum are
pairwise uncorrelated (Percival and Walden, 1993).

88

R
A

N
D

O
M

P
R

O
C

E
S

S
E

S
F

O
R

S
P

E
C

T
R

A
L

A
N

A
LY

S
IS

O
F

S
P

E
E

C
HFigure 6: Top row: The DPS sequences of order m = 0 to m = 5, computed using the parameters n = 883 and W = 4/883. Bottom

row: The eigenspectrum of the center 20 ms window of the /s/ from Figure 1, each computed using the DPS sequence above as a data
window.

89

PATRICK F. REIDY

0 5 10 15 20

−
15

−
10

−
5

0

Frequency (kHz)

Lo
g

am
pl

itu
de

Figure 7: The multitaper spectrum (black line) of the center 20 ms of the /s/ from Figure 1,
plotted with the upper and lower bounds (gray lines) of a 95% confidence interval for each
ordinate.

The K mutually uncorrelated eigenspectra are averaged pointwise to compute the mul-
titaper spectrum M

(K)
X ; hence, the asymptotic distribution of each ordinate of M (K)

X is a
scaled chi-squared with 2K degrees of freedom:

M
(K)
X (ωj) =

1

K

K−1∑
k=0

Sk(ωj)
d−→ fX(ωj)

2K
χ2
2K . (44)

Using this distribution to approximate the variance of each ordinate M (K)
X (ωj) yields

Var
[
M

(K)
X (ωj)

]
=

(
fX(ωj)

2K

)2

Var
[
χ2
2K

]
=

fx(ωj)
2

K
. (45)

Comparing (45) to (40), it is obvious that the ordinates of a multitaper spectrum have 1/K
the variance of the ordinates of a Hamming-window periodogram.

The benefit of this reduced variance is revealed by the size of the confidence intervals
for the ordinates of the multitaper spectrum. The confidence interval for each ordinate
M

(K)
X (ωj) is calculated analogously to (41),

2KM
(K)
X (ωj)

χ2
2K(1− α/2)

≤ fX(ωj) ≤
2KM

(K)
X (ωj)

χ2
2K(α/2)

. (46)

Figure 7 shows the multitaper spectrum of the 20 ms of /s/ plotted with upper and lower
bounds of a 95% confidence interval for each ordinate. The size of these confidence inter-
vals is noticeably smaller than those in Figure 5: the mean size of the confidence intervals

90

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

for the ordinates of the Hamming-window periodogram estimate is 4.982, while the mean
value of those of the multitaper spectrum estimate is 0.486. The correct interpretation
of this difference in size is that when estimating an ordinate of the spectral density at a
given frequency, fX(ωj), it is possible to circumscribe a smaller set of values within which
fX(ωj) is likely to fall if the multitaper spectrum is used rather than the Hamming-window
periodogram.

This brief introduction to spectral estimation has focused on two spectral estimators
that have been used in speech applications: the Hamming-windowed periodogram and the
multitaper spectrum. The comparison of these two estimators was carried out primarily
in terms of the asymptotic variance of each estimator’s ordinates, and it was shown that
the multitaper spectrum has a variance that is a fraction of that of the Hamming-windowed
periodogram.

4 Conclusion

In this paper, the spectral representation theory for random processes was reviewed,
and two methods for estimating the spectrum of a random process were introduced and
evaluated. The evaluation of the spectral estimators was carried out in theoretical terms,
e.g. by comparing the variance of the asymptotic distribution of each estimator’s ordinates.
It was shown that the multitaper spectrum is a much “better” estimator than the Hamming-
windowed periodogram in the sense that the variance of the former’s ordinates is a fraction
of that of the latter.

The reader is advised to bear in mind that this notion of “better” is purely theoretical,
and in practice a spectral analysis of speech data usually does not end with the estimation
of a spectrum, but with the estimation of properties of a spectrum, e.g. the peak frequency
or one or more of the formants or spectral moments. Therefore, the comparison of the
multitaper spectrum and the Hamming-windowed periodogram presented in §3 does not
settle the question of which estimator is better-suited to a particular spectral analysis. In
fact, it doesn’t even address the question since doing so can only be done meaningfully
once the details of the analysis are known.

References

Beerends, R. J.; H. G. ter Morsche; J. C. van den Berg; and E. M. van de Vrie. 2003.
Fourier and Laplace transforms. Cambridge University Press, Cambridge, UK.

Landau, H. J., and H. O. Pollak. 1961. Prolate spheroidal wave functions, Fourier analysis,
and uncertainty—ii. Bell System Technical Journal 40.65–84.

Landau, H. J., and H. O. Pollak. 1962. Prolate spheroidal wave functions, Fourier analysis,
and uncertainty—iii: The dimension of the space of essentially time- and band-limited
signals. Bell System Technical Journal 41.1295–1336.

91

PATRICK F. REIDY

Percival, Donald B., and Andrew T. Walden. 1993. Spectral analysis for physical applica-
tions: Multitaper and conventional univariate techniques. Cambridge University Press,
Cambridge, UK.

Shumway, Robert H., and David S. Stoffer. 2006. Time series analysis and its applications.
Springer Texts in Statistics. Springer, 2nd edition.

Slepian, David. 1964. Prolate spheroidal wave functions, Fourier analysis, and
uncertainty—iv: Extensions to many dimensions; generalized prolate spheroidal func-
tions. Bell System Technical Journal 43.3009–3058.

Slepian, David, and H. O. Pollak. 1961. Prolate spheroidal wave functions, Fourier analy-
sis, and uncertainty—i. Bell System Technical Journal 40.43–64.

Thomson, David J. 1982. Spectrum estimation and harmonic analysis. Proceedings of the
IEEE 70.1055–1096.

Appendices

The appendices below contain R code that can be used for the spectral analysis of speech
data—in particular, the computation of Hamming-windowed periodogram and multitaper
spectrum estimates.

A Waveform.r

Author: Patrick Reidy
Affiliations: The Ohio State University
Department of Linguistics
www.ling.ohio-state.edu
Learning To Talk
www.learningtotalk.org
Email: reidy@ling.ohio-state.edu
Mail: 24A Oxley Hall
1712 Neil Ave.
Columbus, OH 43210-1298
License: GPL-3

The Waveform package depends on the Simon Urbanek’s
’audio’ package.
library(’audio’, quietly=TRUE)

92

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

#######################
Utility functions
#######################

‘%@%‘ <- function(...) {
%@% is a generic function for getting the value of an
object’s attribute(s).
Methods available in the Waveform package:
%@%.default

UseMethod(’%@%’)
}

‘%@%.default‘ <- function(object, attribute) {
%@%.default is the default method for getting the value of
an object’s attribute(s).
Arguments:
object: Any R object.
attribute: A character string that names an attribute
slot of object.
Returns:
The value of the R object in the attribute slot of
object.

attr(object, attribute)
}

‘%@%<-‘ <- function(...) {
%@%<- is a generic function for setting the value of an
object’s attribute(s).
Methods available in the Waveform package:
%@%<-.default

UseMethod(’%@%<-’)
}

‘%@%<-.default‘ <- function(object, attribute, value) {
%@%<-.default is the default method for setting the value
of an object’s attribute(s).
Arguments:
object: Any R object.
attribute: A character string that names an attribute
slot of object.
value: Any R object.
Returns:
Nothing. Instead, the value of object’s attribute slot
is changed to value.

‘attr<-‘(object, attribute, value)

93

PATRICK F. REIDY

}

.ConvertUnitNameToMultiplier <- function(unitName) {
.ConvertUnitNameToMultiplier is a utility function for
converting the time unit c(’second’, ’millisecond’,
’microsecond’, ’nanosecond’) to proportions of one second.
.ConverUnitNameToMultiplier implements the following map:
’second’ |--> 1
’millisecond’ |--> 1000
’microsecond’ |--> 1000000
’nanosecond’ |--> 1000000000

if (unitName == ’second’) {
multiplier <- 1

} else if (unitName == ’millisecond’) {
multiplier <- 1000

} else if (unitName == ’microsecond’) {
multiplier <- 1000000

} else if (unitName == ’nanosecond’) {
multiplier <- 1000000000

}
return(multiplier)
}

.FindSampleAtTime <- function(waveform, timeOfSample,
timeUnit=(waveform %@% ’timeUnit’)) {

.FindSampleAtTime is a utility function for finding the
index of the sample that occurs at a given time. Each
sample point of the Waveform object is conceived of as
being a half-open interval that is closed on the left and
open on the right. The time value of each sample point
is the value of the left boundary.
Arguments:
waveform: A Waveform object.
timeOfSample: A numeric specifying the time of the
sample whose index is to be found.
timeUnit: A character string specifying the unit of
the timeValue argument. Legal values:
c(’second’, ’millisecond’, ’microsecond’,
’nanosecond’).
Default is the unit of time for the time
values of the Waveform object.
Returns:
An integer specifying the index of the sample of the
Waveform object that occurs at the time specified by
the timeOfSample argument.

94

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

Create a vector of the sample times for the Waveform
object.
sample.times <- .ComputeSampleTimes(waveform)

Convert the timeOfSample to the same unit as the sample
times.
wave.time.unit <-
.ConvertUnitNameToMultiplier(waveform %@% ’timeUnit’)
sample.time.unit <-
.ConvertUnitNameToMultiplier(timeUnit)
time.of.sample <-
timeOfSample * (wave.time.unit / sample.time.unit)

Find the sample times that are prior or equal to the
time.of.sample.
prior.sample.times <-
which(sample.times <= time.of.sample)

The sample index is the last sample whose time is prior
or equal to the time.of.sample; hence, the index is
equal to the length of prior.sample.times
sample.index <- length(prior.sample.times)

Return the index of the sample.
return(sample.index)

}

.ComputeSampleTimes <- function(waveform) {
.ComputeSampleTimes is a utility function for computing
the time values of the sampled values of the waveform--
i.e., the values that are not zeroes padded at the end of
waveform in the case when waveform has been zero-padded.
Arguments:
waveform: A Waveform object.
Returns:
An integer specifying the number of sampled values in
waveform.

Find the start time of the waveform.
start.time <- waveform %@% ’startTime’

Find the end time of the waveform.
end.time <- waveform %@% ’endTime’

95

PATRICK F. REIDY

Find the number of samples in the waveform.
sample.n <- waveform %@% ’N’

Create a vector of sample times from the start time, end
time and number of samples.
sample.times <-
seq(from=start.time, to=end.time, length.out=sample.n)

Return the vector of sample times.
return(sample.times)

}

###########################
Object initialization
###########################

Waveform <- function(...) {
Waveform is a generic function for creating a Waveform
object.
methods available in Waveform package:
Waveform.audioSample
Waveform.character

UseMethod(’Waveform’)
}

Waveform.audioSample <-
function(audioSample, startTime=0, timeUnit=’second’) {
Waveform.audioSample is a method for initializing a
Waveform object from an audioSample object. The
audioSample class is defined in the ’audio’ package.
Arguments:
audioSample: An audioSample object.
startTime: A numeric that specifies the time of the
first sampled value of the audioSample
object. Default is 0.
timeUnit: A character string specifying the unit of
measurement for startTime and endTime.
Legal values: c(’second’, ’millisecond’,
’microsecond’, ’nanosecond’).
Default is ’second’.
Returns:
A Waveform object, which is a numeric vector whose
values represent the sampled values of the waveform,
augmented with the following attributes:
bitRate: The bitrate of the sampled waveform.

96

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

sampleRate: The sampling rate of the sampled waveform.
samplePeriod: The sampling period of the sampled
waveform.
N: The number of samples in the waveform,
excluding those values that are added to
the waveform for zero-padding.
startTime: The time at which the first value of the
waveform was sampled.
endTime: The time at which the last value of the
waveform was sampled.
duration: The duration of the waveform.
timeUnit: The unit of measurement for startTime,
endTime, and duration.

The audioSample object is a numeric vector that has a
’bits’ attribute and a ’rate’ attribute for the bit rate and
sampling rate, respectively.
waveform <- as.numeric(audioSample)

Set the ’bitRate’ attribute of waveform to the value of
the ’bits’ attribute of audioSample.
waveform %@% ’bitRate’ <- audioSample %@% ’bits’

Set the ’sampleRate’ attribute of waveform to the value
of the ’rate’ attribute of audioSample.
waveform %@% ’sampleRate’ <- audioSample %@% ’rate’

Set the ’samplePeriod’ attribute of waveform.
waveform %@% ’samplePeriod’ <-

1 / (waveform %@% ’sampleRate’)

Set the ’N’ (number of samples attribute of waveform.
waveform %@% ’N’ <- length(waveform)

Set the ’startTime’ attribute of waveform from the
startTime argument.
waveform %@% ’startTime’ <- startTime

Set the ’endTime’ attribute of waveform.
time.lag.from.start <-
((waveform %@% ’N’) - 1) / (waveform %@% ’sampleRate’)
waveform %@% ’endTime’ <-
time.lag.from.start + (waveform %@% ’startTime’)

Set the ’duration’ attribute of waveform. The

97

PATRICK F. REIDY

(waveform %@% ’samplePeriod’) term is added in the
calculation below because each sampled point is a
treated as a semi-open interval (closed on the left,
open on the right) of duration equal to one sample
period.
sampled.time.range <-
(waveform %@% ’endTime’) - (waveform %@% ’startTime’)
waveform %@% ’duration’ <-
sampled.time.range + (waveform %@% ’samplePeriod’)

Set the ’timeUnit’ attribute of waveform from the
timeUnit argument.
waveform %@% ’timeUnit’ <- timeUnit

Set the class of waveform.
class(waveform) <- ’Waveform’

Return the Waveform object.
return(waveform)

}

Waveform.character <-
function(waveFilepath, startTime=0, timeUnit=’second’) {
Waveform.character is a method for initializing a Waveform
object from the file path of a .wav file.
Arguments:
waveFilepath: A character string specifying either the
absolute or relative file path of a .wav
file.
startTime: A numeric that specifies the time of the
first sampled value of the waveform
pointed to by waveFilepath. Default is 0.
timeUnit: A character string specifying the unit of
measurement for startTime and endTime.
Legal values: c(’second’, ’millisecond’,
’microsecond’, ’nanosecond’).
Default is ’second’.
Returns:
A Waveform object, which is a numeric vector whose
values represent the sampled values of the waveform,
augmented with the following attributes:
bitRate: The bitrate of the sampled waveform.
sampleRate: The sampling rate of the sampled waveform.
samplePeriod: The sampling period of the sampled
waveform.

98

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

startTime: The time at which the first value of the
waveform was sampled.
endTime: The time at which the last value of the
waveform was sampled.
duration: The duration of the waveform.
timeUnit: The unit of measurement for startTime,
endTime, and duration.

Create an audioSample object by loading the wave file
pointed to by waveFilepath.
audioSample <- load.wave(waveFilepath)

Dispatch the Waveform.audioSample method.
Waveform(audioSample, startTime, timeUnit)

}

######################################
Methods to R’s generic functions
######################################

plot.Waveform <- function(waveform, xAxisUnit=’millisecond’,
type=’l’, col=’orange’,
xlab=sprintf(’Time (%s)’, xAxisUnit), ylab=’’, ...) {

plot.Waveform is a method for visualizing a Waveform
object.
Arguments:
waveform: A Waveform object.
xAxisUnit: A character string specifying the unit of the
time points plotted along the x-axis. Legal
values: c(’second’, ’millisecond’,
’microsecond’, ’nanosecond’).
Default is ’millisecond’.
type: The type of line used to plot the values of
waveform. This value is passed to the
graphical parameter ’type’.
col: The color of the line used to plot the values
of waveform. This value is passed to the
graphical parameter ’col’.
xlab: The label on the x-axis. This value is passed
to the graphical parameter ’xlab’. Default is
’Time (<xAxisUnit>)’, where <xAxisUnit> is
replaced by the value of the xAxisUnit
argument.
ylab: The label on the y-axis. This value is passed
to the graphical parameter ’ylab’. Default is to

99

PATRICK F. REIDY

have no label.
...: Other graphical parameters.
Returns:
A plot of the Waveform object.

Make a vector of the time points at which the waveform’s
samples occur.
sample.times <- .ComputeSampleTimes(waveform)

Convert the unit of sample.times.
wave.time.unit <-

.ConvertUnitNameToMultiplier(waveform %@% ’timeUnit’)
x.axis.unit <- .ConvertUnitNameToMultiplier(xAxisUnit)
sample.times <-

sample.times * (x.axis.unit / wave.time.unit)

Grab just the sampled values of the waveform, excluding
the zero-padded values.
wave.values <- as.numeric(waveform)
sample.values <- wave.values[1:(waveform %@% ’N’)]

Plot the Waveform object.
plot(x=sample.times, y=sample.values,

type=type, col=col, xlab=xlab, ylab=ylab, ...)
}

print.Waveform <- function(waveform) {
print.Waveform is a method for reporting the attributes
and visualizing a Waveform object.
Arguments:
waveform: A Waveform object.
Returns:
A report of the attributes of the waveform are printed
to the screen and a plot of the waveform is created.

Print the attributes of the Waveform object.
message(sprintf(

’Sampling rate: %.2f’, waveform %@% ’sampleRate’))
message(sprintf(

’Bit rate: %d’, waveform %@% ’bitRate’))
message(sprintf(

’Number of samples: %d’, waveform %@% ’N’))
message(sprintf(

’Padded to: %d’, length(waveform)))
message()

100

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

message(sprintf(
’Start time: %f’, waveform %@% ’startTime’))

message(sprintf(
’End time: %f’, waveform %@% ’endTime’))

message(sprintf(
’Duration: %f’, waveform %@% ’duration’))

message(sprintf(
’Time unit: %s’, waveform %@% ’timeUnit’))

Visualize the Waveform object.
plot(waveform)

}

##
New generic functions and Waveform methods
##

FirstDifference <- function(...) {
UseMethod(’FirstDifference’)

}

FirstDifference.Waveform <-
function(waveform, coefficient=1) {
Make a delayed copy of the waveform that is scaled by
the coefficient.
delayed.and.scaled <-

c(0, waveform[1:(length(waveform)-1)]) * coefficient

Subtract the delayed and scaled copy from the waveform.
preemphed.wave <- waveform - delayed.and.scaled

Return the pre-emphasized waveform.
return(preemphed.wave)

}

TimeSlice <- function(...) {
TimeSlice is a generic function for slicing a portion of a
time series-like object according to time values, rather
than indices.
Methods available in Waveform package:
TimeSlice.Waveform

UseMethod(’TimeSlice’)
}

TimeSlice.Waveform <- function(waveform, sliceFrom, sliceTo,

101

PATRICK F. REIDY

centered=FALSE, duration,
sliceUnit=(waveform %@% ’timeUnit’)) {

TimeSlice.Waveform is a method for slicing a portion of a
Waveform object according to time values, rather than
indices.
Arguments:
waveform: A Waveform object.
sliceFrom: A numeric specifying the starting time of
the sliced portion of the Waveform object.
sliceTo: A numeric specifying the end time of the
sliced portion of the Waveform object.
centered: A boolean value. If FALSE, then the values
of the sliceFrom and the sliceTo arguments
are used, and the duration argument is
ignored. If TRUE, then the duration argument
is used and the center portion of that
duration is sliced.
duration: A numeric specifying the duration of the
portion to be sliced if centered=TRUE.
sliceUnit: A character string specifying the unit of
time used to specify the sliceFrom and
sliceTo times. Legal values: c(’second’,
’millisecond’, ’microsecond’, ’nanosecond’)
Default is the same time unit as the Waveform
object.
Returns:
The portion of the Waveform object that falls between
the sliceFrom and sliceTo times, or a center portion of
the Waveform object if centered=TRUE. If the Waveform
object had been zero-padded, then the zero-padding is
not appended to the sliced portion of the Waveform
object.

If the sliced portion is determined by sliceFrom and
sliceTo...
if (! centered) {

Find the sample that occurs at the sliceFrom time.
slice.from.index <- .FindSampleAtTime(waveform,

timeOfSample=sliceFrom, timeUnit=sliceUnit)

Find the sample that occurs at the sliceTo time.
slice.to.index <- .FindSampleAtTime(waveform,

timeOfSample=sliceTo, timeUnit=sliceUnit)

Slice the waveform using the slice.from and slice.to

102

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

indices.
sliced.wave <- as.numeric(waveform)
sliced.wave <-

sliced.wave[slice.from.index:slice.to.index]
} else {
If the sliced portion is taken from the center of the
waveform...

Compute the time of the midpoint of the waveform, in
waveform time units.
wave.midpoint <- waveform %@% ’startTime’ +

((waveform %@% ’duration’) / 2)

Convert wave.midpoint from waveform time units to the
time units in which the slice duration is specified.
wave.unit.factor <- .

ConvertUnitNameToMultiplier(waveform %@% ’timeUnit’)
slice.unit.factor <-

.ConvertUnitNameToMultiplier(sliceUnit)
conversion.factor <-

slice.unit.factor / wave.unit.factor
wave.midpoint <- wave.midpoint * conversion.factor

Compute the time at the beginning of the sliced
portion.
slice.from.time <- wave.midpoint - (duration / 2)

Find the sample that occurs at slice.from.time.
slice.from.index <- .FindSampleAtTime(waveform,

timeUnit=sliceUnit, timeOfSample=slice.from.time)

Compute the time at the end of the sliced portion.
slice.to.time <- wave.midpoint + (duration / 2)

Find the sample that occurs at slice.to.time.
slice.to.index <- .FindSampleAtTime(waveform,

timeOfSample=slice.to.time, timeUnit=sliceUnit)

Slice the waveform using the slice.from and
slice.to indices.
sliced.wave <- as.numeric(waveform)
sliced.wave <-

sliced.wave[slice.from.index:slice.to.index]
}

Copy the attributes of waveform over to those of

103

PATRICK F. REIDY

sliced.waveform.
attributes(sliced.wave) <- attributes(waveform)

Update the ’startTime’, ’endTime’, ’duration’, and ’N’
attributes of sliced.wave.
First, create a vector of the sample times for the
unsliced Waveform object.
sample.times <- .ComputeSampleTimes(waveform)
Second, set the ’startTime’ attribute of sliced.wave to
the time of the first sliced sample.
sliced.wave %@% ’startTime’ <-

sample.times[slice.from.index]
Third, set the ’endTime’ attribute of sliced.wave to the
time of the last sliced sample.
sliced.wave %@% ’endTime’ <- sample.times[slice.to.index]
Fourth, calculate the duration of sliced.wave.
sliced.range <- (sliced.wave %@% ’endTime’) -

(sliced.wave %@% ’startTime’)
sliced.wave %@% ’duration’ <- sliced.range +

(sliced.wave %@% ’samplePeriod’)
Lastly, update the ’N’ attribute of sliced.waveform.
sliced.wave %@% ’N’ <- length(sliced.wave)
Return the sliced waveform.
return(sliced.wave)

}

Zeropad <- function(...) {
Zeropad is a generic function for padding zeroes to the
end of a time series-like object.
Methods available in Waveform package:
Zeropad.Waveform

UseMethod(’Zeropad’)
}

Zeropad.Waveform <-
function(waveform, lengthOut=(waveform %@% ’sampleRate’)) {

Zeropad.Waveform is a method for padding zeroes to the
end of a Waveform object.
Arguments:
waveform: A Waveform object.
lengthOut: An integer specifying the length of the
Waveform object after if has been padded with
zeroes. Default is to pad the waveform to
the length equal to its sampling rate.
Returns:

104

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

A Waveform object that is identical to the original
Waveform object, but with zeroes added to the end of it.

Check that the lengthOut of the padded waveform is
greater than the number of sampled values in the
waveform.
if ((waveform %@% ’N’) < lengthOut) {

If so, pad the waveform.
First, make a copy of just the sampled values of the
waveform.
wave.values <- as.numeric(waveform)
sample.values <- wave.values[1:(waveform %@% ’N’)]
Second, create a vector of 0’s to pad to the end of
the sampled values.
num.zeroes.to.pad <- lengthOut - (waveform %@% ’N’)
zeroes.to.pad <- rep(0, times=num.zeroes.to.pad)
Third, pad the zeroes to the sampled values.
padded.waveform <- c(sample.values, zeroes.to.pad)
Lastly, copy the attributes of the Waveform object
over to the padded waveform.
attributes(padded.waveform) <- attributes(waveform)

} else {
If the number of sampled values is greater than the
length that the waveform should be padded to, then
it cannot be padded.
padded.waveform <- waveform
Print an error message.
message(

’You must pad the waveform to a length that is’)
message(

’number of sampled values in the waveform.’)
message()
message(sprintf(

’Number of sampled values: %d’, waveform %@% ’N’))
}

Return the padded waveform.
return(padded.waveform)

}

B Tapers.r

Author: Patrick Reidy
Affiliations: The Ohio State University

105

PATRICK F. REIDY

Department of Linguistics
www.ling.ohio-state.edu
Learning To Talk
www.learningtotalk.org
Email: reidy@ling.ohio-state.edu
Mail: 24A Oxley Hall
1712 Neil Ave.
Columbus, OH 43210-1298
License: GPL-3

#######################
Utility functions
#######################

‘%@%‘ <- function(...) {
%@% is a generic function for getting the value of an
object’s attribute(s).
Methods available in the Waveform package:
%@%.default

UseMethod(’%@%’)
}

‘%@%.default‘ <- function(object, attribute) {
%@%.default is the default method for getting the value
of an object’s attribute(s).
Arguments:
object: Any R object.
attribute: A character string that names an attribute
slot of object.
Returns:
The value of the R object in the attribute slot of
object.

attr(object, attribute)
}

‘%@%<-‘ <- function(...) {
%@%<- is a generic function for setting the value of an
object’s attribute(s).
Methods available in the Waveform package:
%@%<-.default

UseMethod(’%@%<-’)
}

‘%@%<-.default‘ <- function(object, attribute, value) {
%@%<-.default is the default method for setting the value

106

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

of an object’s attribute(s).
Arguments:
object: Any R object.
attribute: A character string that names an attribute
slot of object.
value: Any R object.
Returns:
Nothing. Instead, the value of object’s attribute slot
is changed to value.

‘attr<-‘(object, attribute, value)
}

###########################
Hamming taper methods
###########################

Hamming <- function(...) {
UseMethod(’Hamming’)

}

Hamming.Waveform <- function(waveform) {
Get the number of samples in the Waveform object.
num.of.samples <- waveform %@% ’N’

Generate the sequence of indices for the samples of the
Waveform object, that is a sequence of integers from 0
to (num.of.samples - 1).
n.values <- seq(from=0, to=(num.of.samples -1))

Compute the values of the Hamming window from the
sequence of n values.
hamming.values <- 0.54 -

(0.46 * cos((2*pi*n.values) / (num.of.samples - 1)))

Pad the values of the Hamming window with the same
number of 0’s that pad the Waveform object.
zero.pad <-

rep(0, times=(length(waveform) - num.of.samples))
hamming.values <- c(hamming.values, zero.pad)

Multiply the Waveform object pointwise by the
zero-padded Hamming window.
windowed.wave <- waveform * hamming.values

Set the attributes of the windowed waveform.

107

PATRICK F. REIDY

attributes(windowed.wave) <- attributes(waveform)

Set an attribute to record how the waveform was
windowed.
windowed.wave %@% ’taper’ <- ’Hamming’

Return the windowed waveform.
return(windowed.wave)

}

C Periodogram.r

Author: Patrick Reidy
Affiliations: The Ohio State University
Department of Linguistics
www.ling.ohio-state.edu
Learning To Talk
www.learningtotalk.org
Email: reidy@ling.ohio-state.edu
Mail: 24A Oxley Hall
1712 Neil Ave.
Columbus, OH 43210-1298
License: GPL-3

#######################
Utility functions
#######################

‘%@%‘ <- function(...) {
%@% is a generic function for getting the value of an
object’s attribute(s).
Methods available in the Waveform package:
%@%.default

UseMethod(’%@%’)
}

‘%@%.default‘ <- function(object, attribute) {
%@%.default is the default method for getting the value of
an object’s attribute(s).
Arguments:
object: Any R object.
attribute: A character string that names an attribute
slot of object.
Returns:

108

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

The value of the R object in the attribute slot of
object.

attr(object, attribute)
}

‘%@%<-‘ <- function(...) {
%@%<- is a generic function for setting the value of an
object’s attribute(s).
Methods available in the Waveform package:
%@%<-.default

UseMethod(’%@%<-’)
}

‘%@%<-.default‘ <- function(object, attribute, value) {
%@%<-.default is the default method for setting the value of
an object’s attribute(s).
Arguments:
object: Any R object.
attribute: A character string that names an attribute
slot of object.
value: Any R object.
Returns:
Nothing. Instead, the value of object’s attribute slot
is changed to value.

‘attr<-‘(object, attribute, value)
}

###########################
Object initialization
###########################

Periodogram <- function(...) {
Periodogram is a generic function for computing the
ordinate values of the periodogram of a time series-like
object.

UseMethod(’Periodogram’)
}

Periodogram.Waveform <- function(waveform) {
Periodogram.Waveform is a method for computing the
ordinate values of the periodogram of a Waveform object.
Arguments:
waveform: A Waveform object.
Returns:
A Periodogram object, comprising the ordinate values of

109

PATRICK F. REIDY

the periodogram of the Waveform object. If N is the
number of sampled values in the waveform x, then the
periodogram I of x is defined by
I(w_j) = (1/N) * |d(w_j)|ˆ2,
where w_j = j/N is the jˆth Fourier frequency (for j =
0, ..., N-1) and d(w_j) is the ordinate value of the
discrete Fourier transform at w_j, which is defined by
d(w_j) = \sum_{t=0}ˆ{N-1} x_t * exp{-2 \pi i w_j t}.
A Periodogram object, furthermore, comprises the
following attributes:
nyquist: The Nyquist frequency of the Waveform
object.
N: The number of sampled values in the
Waveform object.
binWidth: The width of each frequency bin in the
Periodogram object.
fourierFreqs: The hertz values of the Fourier
frequencies.

Compute the ordinate values of the periodogram:
First, compute the ordinate values of the power spectrum.
power.spectrum <- abs(fft(waveform))ˆ2
Then, scale the power spectrum to get the periodogram.
periodogram <- (1 / (waveform %@% ’N’)) * power.spectrum

Keep only the ordinate values that lie on the upper half
of the unit circle. That is, the ordinate values for
those frequencies that fall within [0, nyquist).
nyquist.index <- floor(length(periodogram) / 2)
periodogram <- periodogram[1:nyquist.index]

Set the ’nyquist’ attribute of the periodogram, which is
equal to half the sampling rate of the Waveform object.
periodogram %@% ’nyquist’ <-

(waveform %@% ’sampleRate’) / 2

Set the ’N’ attribute of the periodogram, which is equal
to the number of sampled values of the Waveform object.
periodogram %@% ’N’ <- waveform %@% ’N’

Set the ’binWidth’ attribute of the periodogram, which
is equal to the sampling rate of the Waveform object,
divided by the number of values in the Waveform object
(including both sampled and zero-padded values).
periodogram %@% ’binWidth’ <-

110

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

(waveform %@% ’sampleRate’) / length(waveform)

Set the ’fourierFreqs’ attribute of the periodogram.
periodogram %@% ’fourierFreqs’ <-

seq(from=0, length.out=nyquist.index,
by=(periodogram %@% ’binWidth’))

Set the class of the periodogram.
class(periodogram) <-

c(’Periodogram’, ’Spectrum’, ’numeric’)

Return the periodogram.
return(periodogram)

}

D Multitaper.r

Author: Patrick Reidy
Affiliations: The Ohio State University
Department of Linguistics
www.ling.ohio-state.edu
Learning To Talk
www.learningtotalk.org
Email: reidy@ling.ohio-state.edu
Mail: 24A Oxley Hall
1712 Neil Ave.
Columbus, OH 43210-1298
License: GPL-3

The Multitaper package depends on Karim Rahim’s multitaper
package.
library(’multitaper’, quietly=TRUE)

#######################
Utility functions
#######################

‘%@%‘ <- function(...) {
%@% is a generic function for getting the value of an
object’s attribute(s).
Methods available in the Waveform package:
%@%.default

UseMethod(’%@%’)
}

111

PATRICK F. REIDY

‘%@%.default‘ <- function(object, attribute) {
%@%.default is the default method for getting the value
of an object’s attribute(s).
Arguments:
object: Any R object.
attribute: A character string that names an attribute
slot of object.
Returns:
The value of the R object in the attribute slot of
object.

attr(object, attribute)
}

‘%@%<-‘ <- function(...) {
%@%<- is a generic function for setting the value of an
object’s attribute(s).
Methods available in the Waveform package:
%@%<-.default

UseMethod(’%@%<-’)
}

‘%@%<-.default‘ <- function(object, attribute, value) {
%@%<-.default is the default method for setting the value
of an object’s attribute(s).
Arguments:
object: Any R object.
attribute: A character string that names an attribute
slot of object.
value: Any R object.
Returns:
Nothing. Instead, the value of object’s attribute slot
is changed to value.

‘attr<-‘(object, attribute, value)
}

.ColumnMultiply <- function(numVector, numMatrix) {
.ColumnMultiply is a utility function for multiplying each
column of a matrix by a vector.
Arguments:
vect: A numeric vector.
matr: A numeric matrix.
Returns:
A matrix that has the same dimensions as matr. Each
column is equal to the corresponding column of matr

112

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

multiplied by vect.

Multiply each column of matr by vect.
new.matrix <- apply(numMatrix, 2, ‘*‘, numVector)

Return the new matrix.
return(new.matrix)

}

.NormalizeSum <- function(numVector, normalizeTo=1) {
.NormalizeSum is a utility function for normalizing the
values of a numeric vector so that they sum to a
predetermined number.
Arguments:
numVector: A numeric vector.
normalizeTo: A numeric vector of length 1.
Returns:
The numeric vector that results from scaling the
elements of numVector so that they sum to sumTo.

Determine the scale factor.
scale.factor <- normalizeTo / sum(numVector)

Multiply by the scale factor.
normalized.vector <- numVector * scale.factor

Return the normalized vector.
return(normalized.vector)

}

###########################
Object initialization
###########################

Multitaper <- function(...) {
Multitaper is a generic function for computing the
multitaper spectrum of a time series-like object.

UseMethod(’Multitaper’)
}

Multitaper.Waveform <- function(waveform, k=(2*nw), nw=4) {
Multitaper.Waveform is a method for computing the
multitaper spectrum of a Waveform object.
Arguments:
waveform: A Waveform object.

113

PATRICK F. REIDY

k: An integer specifying the number of DPSS
tapers to use in the computation of the
multitaper spectrum. Default value is
k = (2 * nw). Since k and nw are constrained
to satisfy k <= 2*nw, the default value is the
maximum number of tapers that should be used
given a fixed value of nw.
nw: An integer specifying the time-bandwidth
parameter used to generate the DPSS tapers.
Returns:
The kˆth-order multitaper spectrum of the waveform,
computed using DPSS tapers generated using the
time-bandwidth parameter nw. A Multitaper object,
furthermore, has the following attributes:
nyquist: The Nyquist frequency of the Waveform
object.
N: The number of sampled values in the
Waveform object.
binWidth: The width of each frequency bin in the
Multitaper object.
fourierFreqs: The hertz values of the Fourier
frequencies.
k: The number of DPSS tapers (equivalently,
eigenspectra) used in the computation of
the multitaper spectrum.
nw: The time-bandwidth parameter used to
generate the DPSS tapers.

Generate the DPSS tapers using the dpss function from
the multitaper package. dpss creates a named list whose
’v’ element is a matrix, each column of which is a DPSS
taper.
dpss.taper.matrix <-

dpss(n=(waveform %@% ’N’), k=k, nw=nw)$v

Zero-pad the DPSS tapers to the length of the waveform,
since the waveform is zero-padded by the difference
between length(waveform) and (waveform %@% ’N’):
First, determine how many zeroes were padded on the end
of the waveform.
pad.length <- length(waveform) - (waveform %@% ’N’)
Second, create a matrix of 0’s that has pad.length rows
and k columns.
zeropad.matrix <- matrix(data=0, nrow=pad.length, ncol=k)
Lastly, row bind the zeropad.matrix to the bottom of the

114

RANDOM PROCESSES FOR SPECTRAL ANALYSIS OF SPEECH

dpss.taper.matrix.
dpss.taper.matrix <- r

bind(dpss.taper.matrix, zeropad.matrix)

Make k tapered copies of the sampled waveform by
windowing it by each DPSS taper, using the
.ColumnMultiply function.
tapered.wave.matrix <-

.ColumnMultiply(waveform, dpss.taper.matrix)

Compute the k eigenspectra of the waveform. The kˆth
"eigenspectrum" of the waveform is the periodogram of
the waveform after it has been windowed by the kˆth
DPSS taper.
eigenspectra <- abs(fft(tapered.wave.matrix))ˆ2

For each eigenspectrum, keep only the ordinate values
for the frequencies in the [0, nyquist) range.
nyquist.index <- floor(length(waveform) / 2)
nyquist.eigenspectra <- eigenspectra[1:nyquist.index,]

Compute the kˆth order multitaper spectrum by averaging
the k eigenspectra, pointwise.
if (k == 1) {

multitaper <- nyquist.eigenspectra
} else {

multitaper <- rowMeans(nyquist.eigenspectra)
}

Set the ’nyquist’ attribute of the multitaper spectrum,
which is equal to half the sampling rate of the
Waveform object.
multitaper %@% ’nyquist’ <-

(waveform %@% ’sampleRate’) / 2

Set the ’N’ attribute of the multitaper spectrum, which
is equal to the number of sampled values of the Waveform
object.
multitaper %@% ’N’ <- waveform %@% ’N’

Set the ’binWidth’ attribute of the multitaper spectrum,
which is equal to the sampling rate of the Waveform
object, divided by the number of values in the Waveform
object (including both sampled and zero-padded values).
multitaper %@% ’binWidth’ <-

115

PATRICK F. REIDY

(waveform %@% ’sampleRate’) / length(wavefofrm)

Set the ’fourierFreqs’ attribute of the multitaper
spectrum.
multitaper %@% ’fourierFreqs’ <-

seq(from=0, length.out=nyquist.index,
by=(multitaper %@% ’binWidth’))

Set the ’k’ attribute of the multitaper spectrum.
multitaper %@% ’k’ <- k

Set the ’nw’ attribute of the multitaper spectrum.
multitaper %@% ’nw’ <- nw

Set the class of the multitaper spectrum.
class(multitaper) <- c(’Multitaper’, ’Spectrum’, ’numeric’)

Return the multitaper spectrum.
return(multitaper)

}

116

	Introduction
	Spectral representation of a random process
	Existence of a spectral representation of speech data
	The domain of the spectral density function

	Spectral Estimation
	The windowed periodogram
	Bias properties of the windowed periodogram
	Variance of the windowed periodogram

	The multitaper spectrum

	Conclusion
	Waveform.r
	Tapers.r
	Periodogram.r
	Multitaper.r

